Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Dmitry A. Cheshkov, ${ }^{\text {a }}{ }^{*}$ Boris A. Belyaev, ${ }^{\text {a }}$ Andrey P. Belov ${ }^{\text {a }}$ and Victor B. Rybakov ${ }^{\text {b }}$
${ }^{\text {a }}$ Moscow State Academy of Fine Chemical Technology, 119571 Moscow, Russian Federation, and ${ }^{\mathbf{b}}$ Department of Chemistry, Moscow State University, 119992 Moscow, Russian Federation

Correspondence e-mail: cheshkov@gpi.ru

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
R factor $=0.041$
$w R$ factor $=0.105$
Data-to-parameter ratio $=21.7$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

Chloro(1-methoxymethyl- π-allyl)-(pyridine- κN)palladium(II)

The structure of the novel title π-allyl palladium complex, $\left[\mathrm{PdCl}\left(\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{O}\right)\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)\right]$, has been determined. The allyl fragment is slightly skewed.

Comment

Palladium is one of the most widely used transition metals in catalytic reactions (Tsuji, 1998). Synthetically, the reaction of allylic alkylation via π-allyl palladium complexes is a very useful, versatile and powerful tool for $\mathrm{C}-\mathrm{C}, \mathrm{C}-\mathrm{O}$ and $\mathrm{C}-\mathrm{N}$ bond formation (Blystone, 1989; Trost \& Vranken, 1996; Ritleng et al., 2002; Feuerstein et al., 2001). In several cases, the intermediate complexes are stable enough for X-ray crystallographic determination, and a number of structures have been reported (Cambridge Structural Database, Version 5 of November 2003; Allen, 2002). The regulating ligands play a crucial role in regio- and stereoselectivity in nucleophilic addition reactions (Pregosin \& Salzmann, 1996; Albinati et al., 1991) and consequently in the products of reaction. Therefore, it is important to establish what influence these regulating ligands have on π-allyl conjugated systems. The molecular structure and atomic numbering of the title compound, (I), are given in Fig. 1.

Received 5 January 2004 Accepted 21 January 2004 Online 14 February 2004

(I)

The pyridine ligand coordinates to the Pd atom using its unshared pair of electrons of atom N1. The pyridine is located trans to the substituted C atom of the allyl fragment. The result of this present X-ray analysis shows that the structural features of pyridine remain practically unchanged on coord-

Figure 1
ORTEP-3 (Farrugia, 2003) plot of the title compound. Displacement ellipsoids are shown at the 30% probability level.
ination. Atom Pd1 is slightly displaced from the plane of the pyridine ring $[0.072$ (6) A]; the dihedral angle between the pyridine plane and the $\mathrm{N} 1-\mathrm{Pd} 1-\mathrm{Cl} 1$ plane is $25.0(2)^{\circ}$; the $\mathrm{N} 1-\mathrm{Pd} 1-\mathrm{Cl} 1$ angle is $94.4(1)^{\circ}$; the distance from Pd 1 to the plane of the π-allyl ligand $(\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9)$ is 1.667 (8) \AA; the dihedral angle between the plane of the π-allyl ligand and the $\mathrm{N} 1-\mathrm{Pd} 1-\mathrm{Cl} 1$ plane is $67.2(5)^{\circ}$; the $\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$ angle in the π-allyl ligand is $118.9(5)^{\circ}$; the distance from Pd 1 to cis- C 7 is 2.124 (5) \AA and the distance from Pd 1 to trans- C 9 is 2.136 (5) \AA, reflecting the influence of the $-\mathrm{CH}_{2} \mathrm{OCH}_{3}$ group. This group has a (-)antiperiplanar orientation with respect to $\mathrm{Pd} 1\left[\mathrm{Pd} 1-\mathrm{C} 9-\mathrm{C} 10-\mathrm{O} 11=-179.0(3)^{\circ}\right]$. The $\mathrm{O} 11-\mathrm{C} 12$ bond is perpendicular to the plane of the allyl ligand. Although the non-planar molecule is chiral, the crystal structure is racemic. Insertion of pyridine into the coordination sphere of palladium leads to a slight skewing of the π-allyl ligand. This distortion may lead to an increase in the reactivity of π-allyl-palladium complexes, and may influence the direction of attack of nucleophilic reagents (e.g. in direct allylic alkylation).

Experimental

Chlorobis(1-methoxymethyl- π-allyl)palladium ($25 \mathrm{mg}, 0.055 \mathrm{mmol}$; Huttel, 1970) was dissolved in 1 ml of chloroform, and a double excess of pyridine ($17.8 \mathrm{ml}, 0.22 \mathrm{mmol}$) was added. The mixture was stirred at room temperature for 5 min .15 ml of heptane was then added. A yellow precipitate was filtered off, washed with petroleum ether and dried in a vacuum at room temperature, giving 27.4 mg (81% yield). Crystals suitable for X-ray study were obtained by crystallization from chloroform/heptane and are air-stable.

Crystal data

$\left[\mathrm{PdCl}\left(\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{O}\right)\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)\right]$
$M_{r}=306.07$
Monoclinic, $P 2_{1} / n$
$a=8.627$ (5) \AA 。
$b=13.115$ (4) \AA
$c=10.299(2) \AA$
$\beta=90.38(2)^{\circ}$
$V=1165.2(8) \AA^{3}$
$Z=4$
$D_{x}=1.745 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 25
\quad reflections
$\theta=15-16^{\circ}$
$\mu=1.79 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Prism, yellow
$0.3 \times 0.3 \times 0.3 \mathrm{~mm}$

Data collection

Enraf-Nonius CAD-4 diffractometer Non-profiled $\omega / 2 \theta$ scans
Absorption correction: ψ scan (North et al., 1968)
$T_{\text {min }}=0.536, T_{\text {max }}=0.584$
2962 measured reflections
2815 independent reflections
2177 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$
$w R\left(F^{2}\right)=0.105$
$S=1.06$
2815 reflections
130 parameters
H-atom parameters constrained

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$
$W R\left(F^{2}\right)=0.105$
2815 reflections
130 parameters
H -atom parameters constrained

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

Pd1-C8	$2.105(5)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.371(7)$
Pd1-C7	$2.124(5)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.366(7)$
Pd1-N1	$2.128(4)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.362(7)$
Pd1-C9	$2.136(5)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.390(7)$
Pd1-Cl1	$2.3787(13)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.374(7)$
N1-C2	$1.329(5)$	$\mathrm{C} 9-\mathrm{C} 10$	$1.499(7)$
N1-C6	$1.341(5)$	$\mathrm{C} 10-\mathrm{O} 11$	$1.395(6)$
C2-C3	$1.377(7)$	$\mathrm{O} 11-\mathrm{C} 12$	$1.413(6)$
C8-Pd1-C7	$38.4(2)$	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$118.9(5)$
C8-Pd1-N1	$132.14(18)$	$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$	$118.4(5)$
C7-Pd1-N1	$98.69(17)$	$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 4$	$119.5(5)$
C8-Pd1-C9	$37.81(19)$	$\mathrm{N} 1-\mathrm{C} 6-\mathrm{C} 5$	$123.1(4)$
C7-Pd1-C9	$68.0(2)$	$\mathrm{C} 8-\mathrm{C} 7-\mathrm{Pd} 1$	$70.1(3)$
N1-Pd1-C9	$165.92(16)$	$\mathrm{C} 9-\mathrm{C} 8-\mathrm{C} 7$	$118.9(5)$
C8-Pd1-C11	$130.00(15)$	$\mathrm{C} 9-\mathrm{C} 8-\mathrm{Pd} 1$	$72.3(3)$
C7-Pd1-Cl1	$166.82(15)$	$\mathrm{C} 7-\mathrm{C} 8-\mathrm{Pd} 1$	$71.5(3)$
N1-Pd1-Cl1	$94.42(10)$	$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	$124.4(4)$
C9-Pd1-Cl1	$98.85(14)$	$\mathrm{C} 8-\mathrm{C} 9-\mathrm{Pd} 1$	$69.9(3)$
C2-N1-C6	$116.9(4)$	$\mathrm{C} 10-\mathrm{C} 9-\mathrm{Pd} 1$	$121.1(3)$
C2-N1-Pd1	$122.6(3)$	O11-C10-C9	$108.6(4)$
C6-N1-Pd1	$120.5(3)$	$\mathrm{C} 10-\mathrm{O} 11-\mathrm{C} 12$	$113.2(4)$
N1-C2-C3	$123.0(5)$		

H atoms were positioned geometrically $(\mathrm{C}-\mathrm{H}=0.89-0.96 \AA)$ and refined using a riding model, with $U_{\text {iso }}=1.2$ or $1.5 U_{\text {eq }}$ of the parent atom.

Data collection: CAD-4 Software (Enraf-Nonius, 1994); cell refinement: CAD-4 Software; data reduction: PROFIT (Strel'tsov \& Zavodnik, 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 2003); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors are indebted to the Russian Foundation for Basic Research for covering the licence fee (project 99-0790133) for use of the Cambridge Structural Database (Allen, 2002).

References

Albinati, A., Kunz, R. W., Amman, C. J. \& Pregosin, P. S. (1991). Organometallics, 10, 1800-1806.
Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Blystone, S. L. (1989). Chem. Rev. 89, 1663-1679.
Enraf-Nonius (1994). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Farrugia, L. J. (2003). ORTEP-3 for Windows. University of Glasgow, Scotland.
Feuerstein, M., Laurenti, D., Doucet, H. \& Santelli, M. (2001). Tetrahedron Lett. 42, 2313-2315.
Huttel, R. (1970). Synthesis, pp. 225-255.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Pregosin, P. S. \& Salzmann, R. (1996). Coord. Chem. Rev. 155, 35-68.
Ritleng, V., Sirlin, C. \& Pfeffer, M. (2002). Chem. Rev. 102, 1731-1769.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Strel'tsov, V. A. \& Zavodnik, V. E. (1989). Sov. Phys. Crystallogr. 34, 824-828.
Trost, B. M. \& Vranken, D. L. (1996). Chem. Rev. 96, 395-422.
Tsuji, J. (1998). Palladium Reagents and Catalysts. New York: Wiley.

